SYNTHESES OF (S)-4-AMINO-2-HYDROXYBUTYRYL DERIVATIVES OF 3',4'-DIDEOXYKANAMYCIN B AND THEIR ANTIBACTERIAL ACTIVITIES

Sir:

KAWAGUCHI et al.^{1,2)} reported that 1-N-[(S)-4-amino-2-hydroxybutyryl]-kanamycin (BB-K8) was effective against kanamycin-sensitive and -resistant bacteria, but its three positional isomers, 3-, 6'-, and 3"-N-[(S)-4-amino-2hydroxybutyryl]-kanamycin were almost inactive. In a previous paper³, we reported the syntheses of 1-N-[(S)-4-amino-2-hydroxybutyryl]-kanamycin B and -3',4'-dideoxykanamycin B (1-AHB-DKB) which were active against kanamycinresistant bacteria producing kanamycin-phosphotransferases $I^{4,\overline{5}}$ and II^{6} , and kanamycinnucleotidyltransferase 7^{-10} . In the present communication, the syntheses and characterization of four positional isomers of 1-AHB-DKB and two diacyl derivatives of 3',4'-dideoxykanamycin B^{11,12)} are reported. One of the latter, 1,2'-di-N-[(S)-4-amino-2-hydroxybutyryl]-3,'4'-dideoxykanamycin B (1,2'-AHB-DKB) was active against kanamycin-sensitive and -resistant bacteria.

As described in the previous paper³¹, 1-AHB-DKB was synthesized from 6'-N-tert-butyloxycarbonyl-3',4'-dideoxykanamycin B (I) by reaction with an equimolar amount of tert-butyloxycarbonyl azide followed by acylation with the Nhydroxysuccinimide ester of (S)-4-tert-butyloxycarbonylamino-2-hydroxybutyric acid (II) and removal of the N-protecting group. The reaction products were adsorbed on a column of Amberlite CG 50 (NH_4^+) and separated into 1-AHB-DKB, its three positional isomers (3-, 2'-, and 3"-AHB-DKB) and two diacyl derivatives (1,2'- and 3,2'-AHB-DKB) by stepwise elution with 0.5, 0.75 and 1.0 N ammonia. After washing the column with water, unreacted DKB (32% yield) and 2'-AHB-DKB (21%) were eluted with 0.5 N ammonia, 3-AHB-DKB (6%), 1-AHB-DKB (12%) and 3"-AHB-DKB (4%) were eluted with 0.75 N ammonia, and 3,2'-AHB-DKB (3%), 1,2'-AHB-DKB (3%) and the other diacyl derivatives were eluted with 1.0 N ammonia. The 1,2'-AHB-DKB was also synthesized in good yield by reaction with I and 2.5 equivalents of II. The 3"-AHB-DKB was also prepared from 1,3,2',6'-tetra-N-tert-butyloxycarbonyl-3',4'-dideoxykanamycin B (III) in a 78% yield. The III was synthesized from DKB

Derivatives	mp (dec.)	[α] _D in H₂O	Molecular formula*1	Rf on	MS of N-acetyl deriv.*3 (m/e)	
			Molecular formula	TLC*2	314	358
3-AHB-DKB	166~168°	+ 77° at 24°	$C_{22}H_{44}N_6O_{10}\cdot H_2CO_3$	0.24		+
2′-AHBDKB	$164 \sim 166^{\circ}$	+ 98° at 26°	$C_{22}H_{44}N_6O_{10}\cdot H_2CO_3$	0.29	+	
6'-AHB-DKB	$168 \sim 170^\circ$	+ 83° at 26°	$C_{22}H_{44}N_6O_{10}\cdot H_2CO_3$	0.27	+	—
3''-AHB-DKB	$177 \sim 180^{\circ}$	$+100^{\circ}$ at 26°	$C_{22}H_{44}N_6O_{10}\cdot H_2CO_3$	0.12		—
1,2'-AHB–DKB	$168 \sim 170^{\circ}$	+ 78° at 24°	$C_{26}H_{51}N_7O_{12} \cdot 2H_2CO_3$	0.09	+	+
3,2'-AHB-DKB	166~167°	+ 76° at 24°	$C_{26}H_{51}N_7O_{12}\!\cdot\!2H_2CO_3$	0.18	+	+

Table 1. The properties of (S)-4-amino-2-hydroxybutyryl derivatives of DKB

*1 Satisfactory elemental analyses were obtained for all compounds.

 *2 Thin-layer chromatography on Silica gel G using butanol-ethanol-chloroform-17% ammonia (4: 5: 2: 5 in volume).

*³ Penta-N-acetyl derivatives were prepared with acetic anhydride in methanol. m/e 314: fragment from N-[(S)-4-amino-2-hydroxybutyryl]-2, 6-diamino-2, 3, 4, 6-tetradeoxy- α -D-glucose. m/e 358: fragment from N-[(S)-4-amino-2-hydroxybutyryl]-2-deoxy-streptamine.

THE JOURNAL OF ANTIBIOTICS

	Minimum inhibitory concentrations (mcg/ml)								
l est organisms	1- AHB-DKB	3- AHB-DKB	2′- AHB-DKB	6′- AHB-DKB	3''- AHB-DKB	1,2'- AHB-DKB	3,2'- AHB-DKB		
Staph. aureus FDA 209P	0.78	25	3.13	6.25	25	25	50		
Staph. aureus Smith	< 0.20				1.56	<0.20			
Staph. aureus TERAJIMA	< 0.20				<0.78	< 0.20			
Sarcina lutea PCI 1001	1.56				100	1.56			
B. anthracis	< 0.20				3.13	< 0.20			
B. subtilis PCI 219	< 0.20				<0.78	< 0.20			
B. subtilis NRRL B-558	< 0.20				< 0.78	< 0.20			
B. cereus ATCC 10702	1.56				25	1.56			
Coryn. bovis 1810	0.39				25	0.78			
Mycob. smegmatis ATCC 607	< 0.20	3.13	3.13	6.25	6.25	0.20	50		
Sh. dysenteriae JS 11910	6.25				>100	6.25			
Sh. flexneri 4b JS 11811	6.25				>100	6.25			
Sh. sonnei JS 11746	3.13				100	6.25			
Sal. typhosa T-63	< 0.20				25	0.78			
Sal. enteritidis 1891	1.56				50	1.56			
Prot. vulgaris OX 19	0.39				25	0.78			
Kl. pneumoniae PCI 602	0.78	25	3.13	12.5	25	0.78	100		
Kl. pneumoniae 22 #3038	1.56	50	100	>100	100	1.56	>100		
E. coli NIHJ	0.78	50	12.5	12.5	50	3.13	100		
E. coli K-12	0.78	50	12.5	12.5	100	1.56	100		
<i>E. coli</i> K–12 R5	0.78	25	12.5	50	50	1.56	50		
E. coli K-12 ML1629	0.78	50	12.5	12.5	50	3.13	100		
E. coli K-12 ML1630	0.78	50	12.5	12.5	50	3.13	100		
E. coli K-12 ML1410	0.78	50	12.5	12.5	100	3.13	50		
<i>E. coli</i> K–12 ML1410 R81	1.56	100	25	25	100	3.13	100		
E. coli LA290 R55	0.78	50	100	100	100	1.56	100		
E. coli LA290 R56	0.39	25	50	>100	25	0.78	100		
E. coli LA290 R64	0.78	50	50	100	50	0.78	50		
<i>E. coli</i> W677	0.39	25	6.25	6.25	25	1.56	50		
<i>E. coli</i> JR66/W677	1.56	100	100	>100	100	6.25	>100		
Ps. aeruginosa A3	3.13	>100	100	25	>100	25	>100		
Ps. aeruginosa No. 12	1.56	>100	25	12.5	>100	6.25	>100		
Ps. aeruginosa TI-13	3.13	>100	100	50	>100	12.5	>100		
Ps. aeruginosa GN315	25	>100	>100	>100	>100	100	>100		
Ps. aeruginosa 99	12.5	>100	>100	50	>100	50	>100		

Table 2. The antimicrobial spectra of (S)-4-amino-2-hydroxybutyryl derivatives of DKB

in a 50% yield by reaction with excess amounts of *tert*-butyloxycarbonyl azide in a mixture of water, pyridine and triethylamine (10: 10: 1 in volume) overnight at room temperature, followed by silicic acid chromatography, mp $210 \sim 212^{\circ}$ C (dec), $[\alpha]_{D}^{28} + 68^{\circ}$ (c 2.1, dimethylformamide). Satisfactory elemental analysis for C₃₈H₆₉N₅O₁₆ was obtained.

The 6'-acyl derivative (6'-AHB-DKB) was synthesized from I in a 64% yield as follows. The tetra-N-benzyloxycarbonylation of I by the usual SCHOTTEN-BAUMANN procedure and debutyloxycarbonylation with 90% trifluoroacetic acid afforded 1,3,2',3''-tetra-N-benzyloxycarbonyl-3',4'-dideoxykanamycin B (IV). The IV without purification was acylated with the N- hydroxysuccinimide ester of (S)-4-benzyloxycarbonyl-amino-2-hydroxybutyric acid. After removal of the protecting group by catalytic hydrogenation with 5% palladium on carbon, the 6'-AHB-DKB was purified by resin chromatography on Amberlite CG 50 (NH_4^+) .

The properties of the (S)-4-amino-2-hydroxybutyryl derivatives of DKB are summarized in Table 1. The structures of these derivatives were completely confirmed by the pmr spectra, mass spectra of penta-N-acetyl derivatives (Table 1), paperchromatography of acid hydrolyzates after N-ethoxycarbonylation, and rotation of mono-N-ethoxycarbonyl-2-deoxystreptamine³¹.

The antimicrobial spectra of these derivatives are shown in Table 2. The 1,2'-AHB-DKB was active against kanamycin-sensitive and -resistant bacteria, but less active than 1-AHB-DKB. Other derivatives are weakly active against bacteria. It is interesting that 1,2'-AHB-DKB is several times more active than 2'-AHB-DKB.

Shinichi Kondo Katsuharu Iinuma Haruo Yamamoto Yoko Ikeda Kenji Maeda Hamao Umezawa

Institute of Microbial Chemistry Kamiosaki, Shinagawa-ku, Tokyo, Japan

(Received August 31, 1973)

References

- KAWAGUCHI, H.; T. NAITO, S. NAKAGAWA & K. FUJISAWA: BB-K8, a new semisynthetic aminoglycoside antibiotic. J. Antibiotics 25: 695~708, 1972
- NAITO, T.; S. NAKAGAWA, Y. ABE, S. TODA, K. FUJISAWA, T. MIYAKI, H. KOSHIYAMA, H. OHKUMA & H. KAWAGUCHI: Aminoglycoside antibiotics. II. Configurational and positional

isomers of BB-K8. J. Antibiotics 26: 297~ 301, 1973

- KONDO, S.; K. IINUMA, H. YAMAMOTO, K. MAEDA & H. UMEZAWA: Syntheses of 1-N-[(S)-4-amino-2-hydroxybutyryl]-kanamycin B and -3',4'-dideoxykanamycin B active against kanamycin-resistant bacteria. J. Antibiotics 26: 412~415, 1973
- 4) UMEZAWA, H.; M. OKANISHI, S. KONDO, K. HAMANA, R. UTAHARA, K. MAEDA & S. MITSU-HASHI: Phosphorylative inactivation of aminoglycosidic antibiotics by *Escherichia coli* carrying R factor. Science 157: 1559~1561, 1967
- UMEZAWA, H.; H. YAMAMOTO, M. YAGISAWA, S. KONDO, T. TAKEUCHI & Y. A. CHABBERT: Kanamycin phosphotranferase I: Mechanism of cross resistance between kanamycin and lividomycin. J. Antibiotics 26: 407~411, 1973
- 6) YAGISAWA, M.; H. YAMAMOTO, H. NAGANAWA, S. KONDO, T. TAKEUCHI & H. UMEZAWA: A new enzyme in *Escherichia coli* carrying Rfactor phosphorylating 3'-hydroxyl of butirosin A, kanamycin, neamine and ribostamycin. J. Antibiotics 25: 748~750, 1972
- 7) YAGISAWA, M.; H. NAGANAWA, S. KONDO, M. HAMADA, T. TAKEUCHI & H. UMEZAWA: Adenylyldideoxykanamycin B, a product of the inactivation of dideoxykanamycin B by *Escherichia coli* carrying R factor. J. Antibiotics 24: 911~912, 1971
- NAGANAWA, H.; M. YAGISAWA, S. KONDO, T. TAKEUCHI & H. UMEZAWA: The structure determination of an enzymatic inactivation product of 3',4'-dideoxykanamycin B. J. Antibiotics 24: 913~914, 1971
- 9) YAGISAWA, M.; H. NAGANAWA, S. KONDO, T. TAKEUCHI & H. UMEZAWA: Inactivation of 3',4'-dideoxykanamycin B by an enzyme solution of resistant *E. coli* and isolation of 3',4'dideoxykanamycin B 2''-guanylate and 2''inosinate. J. Antibiotics 25: 492~494, 1972
- 10) YAGISAWA, M.; H. NAGANAWA, S. KONDO, M. HAMADA, T. TAKEUCHI & H. UMEZAWA: Studies on kanamycin nucleotidyltransferase. The 21st meeting of Japan Society of Chemotherapy at Sapporo, June 1973
- UMEZAWA, H.; S. UMEZAWA, T. TSUCHIYA & Y. OKAZAKI: 3',4'-Dideoxykanamycin B active against kanamycin-resistant *Escherichia coli* and *Pseudomonas aeruginosa*. J. Antibiotics 24: 485~487, 1971
- UMEZAWA, S.; H. UMEZAWA, Y. OKAZAKI & T. TSUCHIYA: Studies on aminosugars. XXXII. Synthesis of 3',4'-dideoxykanamycin B. Bull. Chem. Soc. Jap. 45: 3624~3628, 1972